Magnetic anomalies and itinerant character of electrochemically Li-inserted Li[Li1/3Ti5/3]O4.

نویسندگان

  • Kazuhiko Mukai
  • Jun Sugiyama
چکیده

Spinel oxides of Li[LiyTi2-y]O4 with 0 ≤y≤ 1/3 exhibit two desirable features for solid state chemistry and condensed matter physics. One is a reversible lithium insertion/extraction reaction, in particular for Li[Li1/3Ti5/3]O4, and the other is a superconducting transition at Tc≃ 13 K for Li[Ti2]O4. To study the change in magnetic environments of the y = 1/3 compound with excess Li(x), we measured the magnetic susceptibility (χ) for the Li1+x[Li1/3Ti5/3]O4 samples with 0 ≤x≤ 0.95, which were prepared by an electrochemical Li insertion reaction into Li[Li1/3Ti5/3]O4. Even for the x = 0 sample, two magnetic anomalies were found at T (=63 K) and T (=21 K), despite the fact that all Ti ions should be in the 4+ state with S = 0. A comparative study of TiO2 and Li2TiO3 revealed that these magnetic anomalies are not impurity-induced effects but are caused by an intrinsic nature of Li[Li1/3Ti5/3]O4, probably due to either slight compositional deviation from stoichiometry or dislocations such as a Magnéli phase. For the x > 0 samples, the χ vs. temperature curve was found to consist of a temperature-independent Pauli-paramagnetic contribution and a Curie-Weiss contribution. Detailed analyses of χ clarified the systematic variations of the effective magnetic moment of Ti ions, effective mass of electrons in the conduction band, and density of states at the Fermi level with x, indicating that the Li(+) ions at the 16d site play a significant role in localizing d electrons of Ti(3+) ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High‐Voltage and High‐Capacity Li1+xNi0.5Mn1.5O4 Cathode Material: From Synthesis to Full Lithium‐Ion Cells

We report Co-free, Li-rich Li1+x Ni0.5 Mn1.5 O4 (0<x<1) compounds as high-voltage and high-capacity cathode materials for Li-ion cells. Their tailored morphology allows high density and facile processability for electrode development. In the potential range 2.4-4.9 V, the cathode material of composition Li1.5 Ni0.5 Mn1.5 O4 shows excellent performance in terms of capacity and cycling stability ...

متن کامل

Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode.

The development of cathode materials with high capacity and cycle stability is essential to emerging electric-vehicle technologies, however, of serious environmental concern is that materials with these properties developed so far contain the toxic and expensive Co. We report here the Li-rich, Co-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode material, prepared via a template-free, one-st...

متن کامل

Fabrication of single-layer MS2 (M=Mo, W) nanosheets using Li battery setup

Lithium intercalation is a convenient method to prepare few-layer and single-layer MS2 (M=Mo, W) nanosheets. This method is, however, very time-consuming (few days) and it is difficult to control the reaction parameters. To overcome these drawbacks, we have proposed a method to use an Li battery set-up to significantly reduce the reaction time (few hours) and electrochemically intercalate lithi...

متن کامل

Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD

The effects of chemical processing on Li insertion into multi-walled carbon nanotubes (MWNTs) are reported. MWNTs were synthesized on the supported catalysts by the thermal CVD method, purified and chemically etched. And then the purified MWNTs and the etched MWNTs were electrochemically inserted with Li. The reversible capacity increased with increase in the etching time from 351 mAh/g (Li0:9C...

متن کامل

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 35  شماره 

صفحات  -

تاریخ انتشار 2015